流水灯控制

该电路使用了发光二极管电路和时钟电路,相关电路参考"3.2.5 发光二极管(LED)电路"和"3.2.4 时钟电路(CLK)"

功能描述:通过 CPLD 来控制发光二极管,从 L1 到 L12 依次点亮,在下一个灯两的时候前面的灯一直保持亮;看上去的效果就象亮点从 L1 一直流向 L12,连后一起熄灭,再重复流水过程,故命名流水灯。

源程序: (GUIDE 光盘/samples/LEDWATER/LEDWATER.v)

```
//流水灯控制 ledwater.v

//DOWNLOAD FROM WWW. HUSOON. COM

module LEDWATER (L, CLK);

output [12:1] L;

input CLK; //CLK=2HZ

reg[13:1] LREG;

reg[13:1] LREGN;

always@(posedge CLK)

begin

LREG=LREG<<1;

if(LREG==13'h0000) LREG=13'h1FFF;

LREGN=~LREG;

end
```

assign L=LREGN[12:1];

endmodul e

操作:在QUARTUS中建立工程,并用上面的语句建立 verilog-HDL文件,保存、编译,连后选定芯片 EPM7128SLC84-15,并按下表指定管脚:

	То	Location	General Function
1	□ CLK	PIN_83	Global Clock
2	 □ L[1]	PIN_45	I/O
3	♦ L2	PIN_44	I/O
4	 © L[3]	PIN_41	I/O
5	 □ L[4]	PIN_40	I/O
6	 	PIN_39	I/O
7	 □ L[6]	PIN_37	I/O
8	 □ L[7]	PIN_36	I/O
9	 	PIN_35	I/O
10	 □ L[9]	PIN_34	I/O
11	™ L[10]	PIN_33	I/O
12	™ L[11]	PIN_31	I/O
13	® L[12]	PIN_30	I/O
			0.000

再编译、仿真、下载,并把排针 JP4、JP5 上和上表表对应脚用跳冒插上,将排针 J2 上的 2Hz 对应脚用跳冒插上,你将看到实验结果

注意:源程序中 L 位 12 位 , 而 LREG 位 13 位 , 这是为了让所有灯点 亮后延迟 0.5S 在熄灭因为" i f (LREG==13' h0000)

LREG=13' h1FFF; "中语句执行时间可以看为零